High-speed line-field confocal holographic microscope for quantitative phase imaging.

نویسندگان

  • Changgeng Liu
  • Sebastian Knitter
  • Zhilong Cong
  • Ikbal Sencan
  • Hui Cao
  • Michael A Choma
چکیده

We present a high-speed and phase-sensitive reflectance line-scanning confocal holographic microscope (LCHM). We achieved rapid confocal imaging using a fast line-scan CCD camera and quantitative phase imaging using off-axis digital holography (DH) on a 1D, line-by-line basis in our prototype experiment. Using a 20 kHz line scan rate, we achieved a frame rate of 20 Hz for 512x512 pixels en-face confocal images. We realized coherent holographic detection two different ways. We first present a LCHM using off-axis configuration. By using a microscope objective of a NA 0.65, we achieved axial and lateral resolution of ~3.5 micrometers and ~0.8 micrometers, respectively. We demonstrated surface profile measurement of a phase target at nanometer precision and the digital refocusing of a defocused confocal en-face image. Ultrahigh temporal resolution M mode is demonstrated by measuring the vibration of a PZT-actuated mirror driven by a sine wave at 1 kHz. We then report our experimental work on a LCHM using an in-line configuration. In this in-line LCHM, the coherent detection is enabled by moving the reference arm at a constant speed, thereby introducing a Doppler frequency shift that leads to spatial interference fringes along the scanning direction. Lastly, we present a unified formulation that treats off-axis and in-line LCHM in a unified joint spatiotemporal modulation framework and provide a connection between LCHM and the traditional off-axis DH. The presented high-speed LCHM may find applications in optical metrology and biomedical imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full-field interferometric confocal microscopy using a VCSEL array.

We present an interferometric confocal microscope using an array of 1200 vertical cavity surface emitting lasers (VCSELs) coupled to a multimode fiber. Spatial coherence gating provides ~18,000 continuous virtual pinholes, allowing an entire en face plane to be imaged in a snapshot. This approach maintains the same optical sectioning as a scanning confocal microscope without moving parts, while...

متن کامل

Compact in-line lensfree digital holographic microscope

Phase imaging provides intensity contrast to visualize transparent samples such as found in biology without any staining. Among them, digital holographic microscopy (DHM) is a well-known quantitative phase method. Lensfree implementations of DHMs offer the added advantage to provide large field of views (several mm2 compared to several hundred μm2) and more compact setups that traditional DHM w...

متن کامل

Sparsity-based multi-height phase recovery in holographic microscopy

High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and ...

متن کامل

Quantitative phase analysis in electron holographic interferometry.

Holographic interferometry in an electron microscope and its phase analysis technique are described. The fringe scanning method is used to gain high sensitivity in phase detection. An example of measuring a magnetic field of a fine particle is presented. The measurement accuracy for median filtering is about 1/70 fringe corresponding to the magnetic flux sensitivity of 6 x 10(-17) Wb. Noise red...

متن کامل

Quantitative confocal phase imaging by synthetic optical holography.

We demonstrate quantitative phase mapping in confocal optical microscopy by applying synthetic optical holography (SOH), a recently introduced method for technically simple and fast phase imaging in scanning optical microscopy. SOH is implemented in a confocal microscope by simply adding a linearly moving reference mirror to the microscope setup, which generates a synthetic reference wave analo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 24 9  شماره 

صفحات  -

تاریخ انتشار 2016